RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 3, Pages 41–57 (Mi timm1084)

This article is cited in 31 papers

Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions

S. M. Aseevab, V. M. Veliovc

a Steklov Mathematical Institute, Gubkina str. 8, Moscow, 119991, Russia
b International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
c Institute of Mathematical Methods in Economics, Vienna University of Technology, Argentinier str. 8/E105-4, A-1040 Vienna, Austria

Abstract: The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.

Keywords: infinite horizon, Pontryagin maximum principle, transversality conditions, weak regularity assumptions.

UDC: 517.97

Received: 08.06.2014

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2015, 291, suppl. 1, S22–S39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025