Abstract:
It is known that the solvability set (the maximal stable bridge) in a zero-sum differential game with simple motions, fixed terminal time, geometric constraints on the controls of the first and second players, and convex terminal set can be constructed by means of a program absorption operator. In this case, a backward procedure for the construction of $t$-sections of the solvability set does not need any additional partition times. We establish the same property for a game with simple motions, polygonal terminal set (which is generally nonconvex), and polygonal constraints on the players's controls in the plane. In the particular case of a convex terminal set, the operator used in the article coincides with the program absorption operator.
Keywords:differential games with simple motions in the plane, solvability set, backward procedure.