RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2015 Volume 21, Number 1, Pages 56–70 (Mi timm1142)

This article is cited in 1 paper

On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case

R. R. Gadyl'shina, S. V. Repjevskijb, E. A. Shishkinaa

a Bashkir State Pedagogical University, Ufa
b Chelyabinsk State University

Abstract: A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. Complete asymptotic expansions with respect to a parameter (the length of the small arc) are constructed for an eigenvalue of this problem; the eigenvalue converges to a double eigenvalue of the Neumann problem.

Keywords: Laplace operator; singular perturbation; small parameter; eigenvalue; asymptotics.

UDC: 517.928:517.984

Received: 10.12.2014


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2016, 292, suppl. 1, S76–S90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025