RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2015 Volume 21, Number 4, Pages 78–94 (Mi timm1231)

This article is cited in 1 paper

Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness

Sh. A. Balgimbaeva, T. I. Smirnov

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan

Abstract: Order-exact bounds are obtained for Fourier widths of the Nikol'skii-Besov classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and Triebel-Lizorkin classes $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ of functions with a given majorant $\Omega$ for the mixed modulus of smoothness of order $l$ in the space $L_q(\mathbb{T}^d)$ for all relations between the parameters $p$, $q$, and $\theta$ under some conditions on $\Omega$. The upper bounds follow from order-exact bounds for approximations of the classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ by special partial sums of Fourier series in the multiple system $\Psi_d$ of periodized Meyer wavelets.

Keywords: fourier width, mixed modulus of smoothness, function spaces, wavelet system.

UDC: 517.5

Received: 20.07.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025