RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2016 Volume 22, Number 1, Pages 241–244 (Mi timm1276)

Codimensions of varieties of Poisson algebras with Lie nilpotent commutants

S. M. Ratseeva, O. I. Cherevatenkob

a Ulyanovsk State University, Faculty of Mathematics and Information Technologies
b Ul'yanovsk State Pedagogical University

Abstract: We study varieties of Poisson algebras defined by the identities $\{x_1,x_2\}\cdot\{x_3,x_4\}=0$ and $\{\{x_1,x_2\},\ldots,\{x_{2s+1}, x_{2s+2}\}\}=0$, $s\geq 1$. For each of the varieties we find a carrier algebra and build a basis of the $n$th proper polylinear space. We derive exact formulas for exponential generating functions for sequences of codimensions and proper codimensions as well as exact formulas for codimensions and proper codimensions.

Keywords: Poisson algebra, variety of algebras, growth of a variety.

UDC: 512.572

Received: 17.01.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025