RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2016 Volume 22, Number 4, Pages 53–63 (Mi timm1353)

One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials

A. G. Babenkoa, T. Z. Naumab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg

Abstract: We consider the generalized Poisson kernel $\Pi_{q,\alpha}=\cos(\alpha \pi/2)P +\sin(\alpha\pi/2)Q$ with $q\in(-1,1)$ and $\alpha\in\mathbb{R}$, which is a linear combination of the Poisson kernel $P(t)=1/2+\sum_{k=1}^\infty q^k\cos{kt}$ and the conjugate Poisson kernel $Q(t)=\sum\nolimits_{k=1}^\infty q^k\sin kt$. The values of the best upper and lower integral approximations of the kernel $\Pi_{q,\alpha}$ by trigonometric polynomials of order not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.

Keywords: constrained approximation, trigonometric polynomials, generalized Poisson kernel.

UDC: 517.518.834

MSC: 42A10, 41A29

Received: 26.09.2016

DOI: 10.21538/0134-4889-2016-22-4-53-63


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, 300, suppl. 1, 38–48

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024