RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2016 Volume 22, Number 4, Pages 87–93 (Mi timm1356)

This article is cited in 1 paper

Moving object in $\mathbb{R}^2$ and group of observers

V. I. Berdyshev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We formulate an extremal problem of constructing a trajectory of a moving object that is farthest from a group of observers with fixed visibility cones. Under some constraints on the arrangement of the observers we give a characterization and a method of construction of an optimal trajectory.

Keywords: moving object, observer, optimal trajectory.

UDC: 519.62

MSC: 00A05

Received: 15.09.2016

DOI: 10.21538/0134-4889-2016-22-4-87-93


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2018, 300, suppl. 1, S49–S55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025