RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2016 Volume 22, Number 4, Pages 215–224 (Mi timm1367)

This article is cited in 2 papers

Lebesgue constants for some interpolational ${\mathcal L}$-splines

S. I. Novikov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We find exact values for the uniform Lebesgue constants of interpolational ${\mathcal L}$-splines that are bounded on the real axis, have equidistant knots, and correspond to the linear third-order differential operator ${\mathcal L}_{3}(D)=D(D^{2}+\alpha^{2})$ with constant real coefficients, where $\alpha>0$. We compare the obtained result with the Lebesgue constants of other ${\mathcal L}$-splines.

Keywords: interpolation, spline, Lebesgue constant.

UDC: 517.5

MSC: 41A15

Received: 09.09.2016

DOI: 10.21538/0134-4889-2016-22-4-215-224


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, 300, suppl. 1, 136–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025