RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2017 Volume 23, Number 4, Pages 98–104 (Mi timm1470)

On the structure of a finitary linear group

O. Yu. Dashkovaa, M. A. Salimb, O. A. Shpyrkoa

a Branch of Moscow State University named after M.V. Lomonosov in Sevastopol, 299001 Russia
b United Arab Emirates University, Al-Ain, 15551 United Arab Emirates

Abstract: Let $FL_{\nu}(K)$ be a finitary linear group of degree $\nu$ over a ring $K$, and let $K$ be an associative ring with the unit. We study periodic subgroups of $FL_{\nu}(K)$ in the cases when $K$ is an integral ring (Theorem $1$) and a commutative Noetherian ring (Theorem $2$). In both cases we prove that the periodic subgroups of $FL_{\nu}(K)$ are locally finite and describe their normal structure. In Theorem $3$ we describe the structure of finitely generated solvable subgroups of $FL_{\nu}(K)$ if $K$ is an integral ring, a commutative Noetherian ring, or an arbitrary commutative ring. We show that this structure is most complicated in the latter case.

Keywords: finitary linear group, commutative Noetherian ring, locally finite group.

UDC: 512.544

MSC: 20F50

Received: 20.09.2017

DOI: 10.21538/0134-4889-2017-23-4-98-104



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024