RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2017 Volume 23, Number 4, Pages 128–135 (Mi timm1473)

Automorphisms of a distance-regular graph with intersection array $\{75,64,18,1;1,6,64,75\}$

A. Kh. Zhurtov, M. Kh. Shermetova

Kabardino-Balkarian State University named after H. M. Berbekov, Nal’chik, 360004 Russia

Abstract: A distance-regular graph $\Gamma$ with intersection array $\{115,96,30,1;1,10,96,175\}$ is an $AT4$-graph. The antipodal quotient $\Gamma'$ has parameters $(392,115,18,40)$, and its first and second neighborhoods of vertices are strongly regular with parameters $(115,18,1,3)$ and $(276,75,10,24)$. Moreover, the second neighborhood of any vertex in $\Gamma_2(u)$ has intersection array $\{75,64,18,1;1,6,64,75\}$ and is a $4$-cover of a strongly regular graph with parameters $(276,75,10,24)$. Earlier, Makhnev, Paduchikh, and Samoilenko found possible automorphisms of a graph with parameters $(392,115,18,40)$ and of a graph with intersection array $\{115,96,30,1;1,10,96,175\}$. In this paper we find automorphisms of a graph with intersection array $\{75,64,18,1;1,6,64,75\}$. It is proved that the automorphism group of this graph acts intransitively on the set of its antipodal classes.

Keywords: distance-regular graph, automorphism of a graph.

UDC: 519.17+512.54

MSC: 05B25

Received: 07.04.2017

DOI: 10.21538/0134-4889-2017-23-4-128-135



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025