On the order of decrease of uniform moduli of smoothness for the classes of periodic functions $H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$
N. A. Il'yasov Baku State University, Baku, Azerbaijan
Abstract:
S. B. Stechkin posed the following problem: for given
$1\le p<q\le\infty$,
$r\in\mathbb Z_{+}$,
$l,k\in\mathbb N$, and
$\omega \in\Omega_{l}(0,\pi]$, find the exact order of decrease of the
$L_{q}(\mathbb T)$-modulus of smoothness of the
$k$th order
$\omega_{k}(f^{(r)};\delta)_{q}$ on the classes of
$2\pi$-periodic functions
$H_{p}^{l}[\omega]=\{f\in L_{p}(\mathbb T):$ $\omega_{l}(f;\delta)_{p}\le\omega(\delta),\,\delta\in(0,\pi]\}$, where
$\mathbb T=(-\pi,\pi]$,
$L_{\infty}(\mathbb T)\equiv C(\mathbb T)$, and
$\Omega_{l}(0,\pi]$ is the class of functions
$\omega=\omega(\delta)$ defined on
$(0,\pi]$ and satisfying the conditions $0<\omega(\delta)\downarrow 0\ (\delta\downarrow 0)$ and $\delta^{-l}\omega(\delta)\downarrow (\delta\uparrow)$. Earlier the author solved this problem in the case
$1\le p<q<\infty$. In the present paper, we give a solution in the case
$1\le p<q=\infty$; more exactly, we prove the following theorems.
Theorem 1.
Suppose that $1\le p<\infty$,
$f\in L_{p}(\mathbb T)$,
$r\in\mathbb Z_{+}$,
$l,k\in\mathbb N$,
$l>\sigma=r+1/p$,
$\rho=l-(k+\sigma)$,
and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega_{l}(f;\pi/n)_p<\infty$.
Then $f$ is equivalent to some function $\psi\in C^{r}(\mathbb T)$and the following estimate holds:$\omega_{k}(\psi^{(r)};\pi/n)_{\infty} \le C_{1}(l,k,r,p)\Big\{\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega_{l}(f;\pi/\nu)_{p}+ \chi(\rho)n^{-k}\sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega_{l}(f;\pi/\nu)_{p}\Big\}$,
$n\in\mathbb N$,
where $\chi(t)=0$ for $t\le 0$,
$\chi(t)=1$ for
$t>0$,
and $C^{r}(\mathbb T)$ is the class of functions $\psi \in C(\mathbb T)$ that have the usual $r$th-order derivative $\psi^{(r)}\in C(\mathbb T)$ $($we assume that $\psi^{(0)}=\psi$ and $C^{(0)}(\mathbb T)=C(\mathbb T))$.
Note that this estimate covers all possible cases of relations between
$l$ and
$k+r$.
Theorem 2.
Suppose that $1\le p<\infty$,
$r\in\mathbb Z_{+}$,
$l,k\in\mathbb N$,
$l>\sigma=r+1/p$,
$\rho=l-(k+\sigma)$,
$\omega \in\Omega_{l}(0,\pi]$,
and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega(\pi/n)<\infty$.
Then $\sup\{\omega_{k}(\psi^{(r)};\pi/n)_{\infty}:$ $f\in H_{p}^{l}[\omega]\}\asymp\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega(\pi/\nu)+\chi(\rho)n^{-k} \times \sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega(\pi/\nu)$,
$n\in\mathbb N$,
where $\psi$ denotes the corresponding function from $C^{r}(\mathbb T)$ equivalent to $f\in H_{p}^{l}[\omega]$.
In Theorems
$1$ and
$2$, the case
$l=k+\sigma=k+r+1/p$ $(\Rightarrow \chi(\rho)=0)$ is of the most interest. This case is possible only for
$p=1$, since
$r\in\mathbb Z_{+}$ and
$l,k\in\mathbb N$. In this case, the proof of the estimate in Theorem
$1$ employs the inequality $n^{-l}\|T_{n,1}^{(l)}(f;\cdot)\|_{\infty} \le C_{2}(l)n\omega_{l+1}(f;\pi/n)_{1}$, where
$T_{n,1}(f;\cdot)$ is a best approximation polynomial for the function
$f\in L_{1}(\mathbb T)$. The latter inequality is derived from the strengthened version of the inequality of different metrics for derivatives of arbitrary trigonometric polynomials $\|t_{n}^{(l)}(\cdot)\|_{\infty}\le 2^{-1}\pi\|t_{n}^{(l+1)}(\cdot)\|_{1}$,
$n\in\mathbb N$.
Keywords:
modulus of smoothness, best approximation, inequality between moduli of smoothness of different orders in different metrics, exact order of decrease for uniform moduli of smoothness on a class.
UDC:
517.518.28+
517.518.862
MSC: 42A10,
41A17,
41A25 Received: 10.08.2017
DOI:
10.21538/0134-4889-2017-23-4-162-175