This article is cited in
1 paper
On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$
N. A. Il'yasov Baku State University
Abstract:
We propose a method for proving, in particular, the equivalence of M.F. Timan's known estimates for the
$r$th-order
$L_{p}$-moduli of smoothness
$\omega_{r}(f;{\pi/n})_{p}$ and O.V. Besov's estimates for the
$L_p$-norms
$\|f^{(r)}\|_{p}$ of
$r$th-order derivatives by using elements of the sequence
$\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ of the best approximations of a
$2\pi$-periodic function
$f\in L_{p}(\mathbb T)$ by trigonometric polynomials of order at most
$n-1$,
$n\in \mathbb N$, where
$r\in \mathbb N$,
$1 < p < \infty$, and
$\mathbb T=(-\pi,\pi]$. Theorem 1. Let
$1 < p < \infty$,
$\theta=\min\{2,p\}$,
$r\in \mathbb N$,
$f\in L_{p}(\mathbb T)$, and $\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p} < \infty$. Then the inequality $\omega_{r}(f;\pi/n)_{p}\le C_{1}(r,p)n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\theta r-1}E_{\nu-1}^{\theta}(f)_{p}\Big)^{1/\theta}$,
$n\in \mathbb N$, is satisfied if and only if
$f\in L_{p}^{(r)}(\mathbb T)$ and $\|f^{(r)}\|_{p} \le C_{2}(r,p) \Big(\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p}\Big)^{1/\theta}$, where
$L_{p}^{(r)}(\mathbb T)$ is the class of functions
$f\in L_{p}(\mathbb T)$ with absolutely continuous derivative of the
$(r-1)$th order and
$f^{(r)} \in L_{p}(\mathbb T)$. Theorem 2. Suppose that
$1 < p < \infty$,
$\beta=\max\{2,p\}$,
$r\in \mathbb N$, and
$f\in L_{p}^{(r)}(\mathbb T)$. Then the inequality $n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\beta r-1} E_{\nu-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{3}(r,p)\omega_{r}(f;\pi/n)_{p}$ is satisfied for
$n\in \mathbb N$ if and only if the inequality $\Big(\sum_{n=1}^{\infty}n^{\beta r-1}E_{n-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{4}(r,p)\|f^{(r)}\|_{p}$ is satisfied. In view of the order identity $\sum_{\nu=1}^{n}\nu^{\alpha r-1}E_{\nu-1}^{\alpha}(f)_{p}\asymp\sum_{\nu=1}^{n}\nu^{\alpha r-1} \omega_{l}^{\alpha}(f;\pi/\nu)_{p}$,
$n\in\mathbb N\cup\{+\infty\}$, where
$1\le\alpha < \infty$,
$l\in\mathbb N$, and
$l>r$, the assertions of Theorems 1 and 2 remain valid if we replace the sequence
$\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ by the sequence
$\{\omega_{l}(f;\pi/n)_{p}\}_{n=1}^{\infty}$ (Theorems 3 and 4). The method used in the proof of Theorems 1 and 2 can be applied to derive equivalent upper estimates and equivalent lower estimates for the values
$E_{n-1}(f^{(r)})_{p}$ and
$\omega_{k}(f^{(r)};\pi/n)_{p}$,
$n\in \mathbb N$, by means of elements of the sequence
$\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$, where
$k,r\in \mathbb N$ and
$1 < p < \infty$.
Keywords:
best approximation, modulus of smoothness, inequalities of approximation theory, equivalent inequalities, Timan's inequalities, Besov's inequalitie.
UDC:
517.518.832
MSC: 42A10,
41A17,
41A25,
41A27 Received: 13.03.2018
DOI:
10.21538/0134-4889-2018-24-2-93-106