RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2018 Volume 24, Number 2, Pages 173–184 (Mi timm1532)

Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: A distance-regular graph $\Gamma$ with intersection array $\{176,135,32,1;1,16,135,176\}$ is an $AT4$-graph. Its antipodal quotient $\bar\Gamma$ is a strongly regular graph with parameters $(672,176$, $40,48)$. In both graphs the neighborhoods of vertices are strongly regular with parameters $(176,40,12,8)$. We study the automorphisms of these graphs. In particular, the graph $\Gamma$ is not arc-transitive. If $G=\mathrm{Aut}\,(\Gamma)$ contains an element of order 11, acts transitively on the vertex set of $\Gamma$, and $S(G)$ fixes each antipodal class, then the full preimage of the group $(G/S(G))'$ is an extension of a group of order 3 by $M_{22}$ or $U_6(2)$. We describe automorphism groups of strongly regular graphs with parameters $(176,40,12,8)$ and $(672,176,40,48)$ in the vertex-symmetric case.

Keywords: strongly regular graph, distance-regular graph, graph automorphism.

UDC: 519.17

MSC: 05C25

Received: 26.12.2017

DOI: 10.21538/0134-4889-2018-24-2-173-184


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, 305, suppl. 1, S102–S113

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025