RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2018 Volume 24, Number 2, Pages 290–297 (Mi timm1543)

This article is cited in 2 papers

On integral Lebesgue constants of local splines with uniform knots

V. T. Shevaldin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We study the stability properties of generalized local splines of the form
$$ S(x)=S(f,x)=\sum_{j\in \mathbb Z} y_j B_{\varphi}\Big( x+\frac{3h}{2}-jh\Big)\quad (x\in \mathbb R), $$
where $\varphi\in C^1[-h,h]$ for $h>0$, $\varphi(0)=\varphi'(0)=0$, $\varphi(-x)=\varphi(x)$ for $x\in [0;h]$, $\varphi(x)$ is nondecreasing on $[0;h]$, $f$ is an arbitrary function from $\mathbb R$ to $\mathbb R$, $y_j=f(jh)$ for $j\in \mathbb Z$, and
$$ B_{\varphi}(x)=m(h)\left\{
\begin{array}{cl} \varphi(x), {\&} x\in [0;h],\\[1ex] 2\varphi(h)-\varphi(x-h)-\varphi(2h-x), {\&} x\in [h;2h],\\[1ex] \varphi(3h-x), {\&} x\in [2h;3h],\\[1ex] 0, {\&} x\not\in [0;3h]\end{array}
\right. $$
with $m(h)>0$. Such splines were constructed by the author earlier. In the present paper we calculate the exact values of their integral Lebesgue constants (the norms of linear operators from $l$ to $L$) on the axis $\mathbb R$ and on any segment of the axis for a certain choice of the boundary conditions and the normalizing factor $m(h)$ of the spline $S$.

Keywords: Lebesgue constants, local splines, boundary conditions.

UDC: 519.65

MSC: 41A15

Received: 15.02.2018

DOI: 10.21538/0134-4889-2018-24-2-290-297


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, 305, suppl. 1, S158–S165

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024