RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2018 Volume 24, Number 4, Pages 5–18 (Mi timm1571)

This article is cited in 3 papers

An inequality of different metrics in the generalized Lorentz space

G. A. Akishevab

a L. N. Gumilev Eurasian National University, Astana
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: The main goal of the paper is to prove the Jackson-Nikol'skii inequality for multiple trigonometric polynomials in the generalized Lorentz space $L_{\psi,\theta}(\mathbb{T}^{m})$. In the first section we give definitions of a symmetric space of functions, a fundamental function, and the Boyd index of a space. In particular, we define the generalized Lorentz and Lorentz-Zygmund spaces. In addition, definitions of a weakly varying function and of the Lorentz-Karamata space are given. In the second section we prove an analog of the inequality of different metrics for multiple trigonometric polynomials in generalized Lorentz spaces $L_{\psi,\theta}(\mathbb{T}^{m})$ with identical Boyd indices but different fundamental functions. In the Lorentz-Karamata space, the order-exact Jackson-Nikol'skii inequality for multiple trigonometric polynomials is obtained.

Keywords: Lorentz-Karamata space, Jackson-Nikol'skii inequality, trigonometric polynomial.

UDC: 517.51

MSC: 42A05, 42A10, 46E30

Received: 29.08.2018
Revised: 23.11.2018
Accepted: 26.11.2018

DOI: 10.21538/0134-4889-2018-24-4-5-18



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025