RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2019 Volume 25, Number 2, Pages 9–20 (Mi timm1619)

This article is cited in 1 paper

On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space

G. A. Akishevab

a L. N. Gumilev Eurasian National University, Astana
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We consider the generalized Lorentz space $L_{\psi,\tau}(\mathbb{T}^m)$ defined by some continuous concave function $\psi$ such that $\psi (0)=0$. For two spaces $L_{\psi_1,\tau_1}(\mathbb{T}^m)$ and $L_{\psi_2,\tau_2}(\mathbb{T}^{m})$ such that $\alpha_{\psi_{1}}={\underline\lim}_{t\rightarrow 0}\psi_{1}(2t)/\psi_{1}(t) = \beta_{\psi_{2}} = \overline{\lim}_{t\rightarrow 0}\psi_{2}(2t)/\psi_{2}(t)$, we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the function $f\in L_{\psi, \tau}(\mathbb{T})$ in terms of the series composed of the Fourier coefficients of this function.

Keywords: generalized Lorentz space, Jackson–Nikol'skii inequality, trigonometric polynomial.

UDC: 517.51

MSC: 42A05, 42A10, 46E30

Received: 31.03.2019

DOI: 10.21538/0134-4889-2019-25-2-9-20



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024