RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2006 Volume 12, Number 2, Pages 195–213 (Mi timm163)

This article is cited in 6 papers

Approximation by local $L$-splines corresponding to a linear differential operator of the second order

V. T. Shevaldin


Abstract: For the class of functions $W_\infty^{\mathcal L_2}=\{f:f'\in AC,\|\mathcal L_2(D)f\|_\infty\le1\}$, where $\mathcal L_2(D)$ is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function $f\in W_\infty^{\mathcal L_2}$ at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric.

UDC: 519.65

Received: 25.05.2006


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2006, 255, suppl. 2, S178–S197

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024