RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2019 Volume 25, Number 2, Pages 258–272 (Mi timm1640)

This article is cited in 16 papers

Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems

M. Sh. Shabozovab, M. S. Saidusajnovab

a Tajik National University, Dushanbe
b University of Central Asia

Abstract: Assume that $\mathcal{A}(U)$ is the set of functions analytic in the disk $U:=\{z: |z|<1\}$, $L_2^{(r)}:=L_2^{(r)}(U)$ for $r\in\mathbb{N}$ is the class of functions $f\in\mathcal{A}(U)$ such that $f^{(r)}\in L_2^{(r)}$, and $W^{(r)}L_2$ is the class of functions $f\in L_2^{(r)}$ satisfying the constraint $\|f^{(r)}\|\leq 1$. We find exact values for mean-square approximations of functions $f\in W^{(r)}L_2$ and their successive derivatives $f^{(s)}$ ($1\leq s\leq r-1$, $r\geq 2$) in the metric of the space $L_2$. A similar problem is solved for the class $W_2^{(r)}(\mathscr{K}_{m},\Psi)$ ($r\in\mathbb{Z}_{+}$, $m\in\mathbb{N}$) of functions $f\in L_2^{(r)}$ such that the $\mathscr{K}$-functional of their $r$th derivative satisfies the condition
\begin{equation*} \mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Psi(t^{m}), \ \ 0<t<1, \end{equation*}
where $\Psi$ is some increasing majorant and $\Psi(0)=0$.

Keywords: generalized modulus of continuity, generalized translation operator, orthonormal system, Jackson–Stechkin inequality, $\mathscr{K}$-functional.

UDC: 517.5

MSC: 42C10, 47A58

Received: 28.02.2019

DOI: 10.21538/0134-4889-2019-25-2-258-272



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025