This article is cited in
1 paper
Description of the linear Perron effect under parametric perturbations exponentially vanishing at infinity
E. A. Barabanova,
V. V. Bykovb a Institute of Mathematics of the National Academy of Sciences of Belarus
b Lomonosov Moscow State University
Abstract:
Let
${\mathcal M}_n$ be the set of linear differential systems of order
$n\geqslant 2$ whose coefficients are continuous and bounded on the time semiaxis
$\mathbb{R}_+$. Denote by $\lambda_1(A)\leqslant\ldots\leqslant \lambda_n(A)$ the Lyapunov exponents of a system
$A\in {\mathcal M}_n,$ by
$\Lambda(A)=(\lambda_1(A),\ldots,\lambda_n(A))$ their spectrum, and by
$\mathrm{es}(A)$ the exponential stability index of
$A$ (the dimension of the linear subspace of solutions with negative characteristic exponents). For a system
$A\in {\mathcal M}_n$ and a metric space
$M,$ we consider the class
${\mathcal E}_n[A](M)$ of continuous
$(n\times n)$ matrix-valued functions $Q\colon \mathbb{R}_+\times M\to \mathbb{R}^{n\times n}$ satisfying the bound
$\|Q(t,\mu)\|\leqslant C_Q\exp(-\sigma_Qt)$ for all
$(t,\mu)\in\mathbb{R}_+\times M,$ where
$C_Q$ and
$\sigma_Q$ are positive constants (possibly different for each function
$Q$), and such that the Lyapunov exponents of the system
$A+Q,$ which are functions of
$\mu\in M$ and are denoted by $\lambda_1(\mu;A+Q)\leqslant\ldots\leqslant \lambda_n(\mu;A+Q),$ are not less than the corresponding Lyapunov exponents of the system
$A$; i.e.,
$\lambda_k(\mu;A+Q)\geqslant \lambda_k(A),$ $k=\overline{1,n},$ for all
$\mu\in M$. The problem is to obtain a complete description for each
$n\in\mathbb{N}$ and each metric space
$M$ of the class of pairs
$\bigl(\Lambda(A),\Lambda(\cdot\,;A+Q)\bigr)$ composed of the spectrum
$\Lambda(A)\in\mathbb{R}^n$ of a system
$A\in {\mathcal M}_n$ and the spectrum
$\Lambda(\cdot\,;A+Q)\colon M\to \mathbb{R}^n$ of a family
$A+Q,$ where
$A$ ranges over
${\mathcal M}_n$ and the matrix-valued function
$Q$ ranges over the class
${\mathcal E}_n[A](M)$ for each
$A,$ i.e., of the class $\Pi {\mathcal E}_n(M)=\{\bigl(\Lambda(A),\Lambda(\cdot\,;A+Q)\bigr)\,\vert\, A\in {\mathcal M}_{n},\,Q\in {\mathcal E}_n[A](M)\}$. The solution of this problem is provided by the following statement: for each integer
$n\geqslant 2$ and every metric space
$M$, a pair
$\bigl(l,F(\cdot)\bigr),$ where
$l=(l_1,\ldots,l_n)\in\mathbb{R}^n$ and $F(\cdot)=(f_1(\cdot),\ldots,f_n(\cdot))\colon M\to \mathbb{R}^n,$ belongs to the class
$\Pi {\mathcal E}_n(M)$ if and only if the following conditions are met: (1)
$l_1\leqslant \ldots \leqslant l_n,$ (2)
$f_1(\mu)\leqslant \ldots \leqslant f_n(\mu)$ for all
$\mu\in M,$ (3)
$f_i(\mu)\geqslant l_i$ for all
$i=\overline{1,n}$ and
$\mu\in M,$ (4) for each
$i=\overline{1,n}$, the function
$f_i(\cdot)\colon M\to \mathbb{R}$ is bounded and, for any
$r\in\mathbb{R}$, the preimage
$f_i^{-1}([r,+\infty))$ of the half-interval
$[r,+\infty)$ is a
$G_{\delta}$-set. The solution of the similar problem of describing the pairs composed of the exponential stability index
$\mathrm{es}(A)\in \{0,\ldots,n\}$ of a system
$A$ and the exponential stability index $\mathrm{es}(\cdot\,;A+Q)\colon M\to \{0,\ldots,n\}$ of a family
$A+Q,$ i.e., the class ${\mathcal I}{\mathcal E}_n(M)=\{\bigl(\mathrm{es}(A),\mathrm{es}(\cdot\,;A+Q)\bigr)\,\vert\, A\in {\mathcal M}_{n},\,Q\in {\mathcal E}_n[A](M)\}$, is contained in the following statement: for any positive integer
$n\geqslant 2$ and every metric space
$M$, a pair
$\bigl(d,f(\cdot)\bigr),$ where
$d\in\{0,\ldots,n\}$ and
$f\colon M\to\{0,\ldots,n\},$ belongs to the class
${\mathcal I}{\mathcal E}_n(M)$ if and only if
$f(\mu)\leqslant d$ for all
$\mu\in M$ and, for any
$r\in\mathbb{R}$, the preimage
$f^{-1}((-\infty,r])$ of the half-interval
$(-\infty,r]$ is a
$G_{\delta}$-set.
Keywords:
linear differential system, Lyapunov exponents, perturbations vanishing at infinity, Baire classes.
UDC:
517.926.4
MSC: 34D08,
34D10 Received: 30.09.2019
Revised: 08.11.2019
Accepted: 11.11.2019
DOI:
10.21538/0134-4889-2019-25-4-31-43