RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2019 Volume 25, Number 4, Pages 177–183 (Mi timm1683)

This article is cited in 1 paper

On the Hewitt realcompactification and $\tau$-placedness of function spaces

A. V. Osipovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We study the relation between extensions of the Hewitt realcompactification type and spaces of strictly $\tau$-$F$-functions. A criterion is obtained for the realcompleteness of the space of Baire functions of class $\alpha$. It is proved that the space $B(X,G)$ of Baire functions from a $G$-$z$-normal space $X$ to a noncompact metrizable separable space $G$ is Lindel$\ddot{\mathrm o}$f if and only if $X$ is countable.

Keywords: realcomplete spaces, weak functional tightness, Baire function, $\tau$-placedness, Hewitt realcompactification.

UDC: 515.122+517.982

MSC: 54C35 54C25

Received: 03.06.2019
Revised: 12.08.2019
Accepted: 12.09.2019

DOI: 10.21538/0134-4889-2019-25-4-177-183



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025