RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2019 Volume 25, Number 4, Pages 226–234 (Mi timm1688)

On Limits of Vertex-Symmetric Graphs and Their Automorphisms

V. I. Trofimovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: Using a simple but rather general method of constructing Cayley graphs with trivial vertex stabilizers, we give an example of an infinite locally finite Cayley graph (and, hence, an example of an infinite connected locally finite vertex-symmetric unimodular graph) which is isolated in the space of connected locally finite vertex-symmetric graphs. We also give examples of Cayley graphs which are not isolated in this space but are isolated from the set of connected vertex-symmetric finite graphs.

Keywords: connected locally finite vertex-symmetric graph, Cayley graph, convergence of graphs.

UDC: 512.54+519.175

MSC: 05C25, 20F65, 20F69

Received: 19.09.2019
Revised: 15.10.2019
Accepted: 21.10.2019

DOI: 10.21538/0134-4889-2019-25-4-226-234


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, 309, suppl. 1, S167–S174

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025