RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2019 Volume 25, Number 4, Pages 255–264 (Mi timm1691)

This article is cited in 5 papers

Sharp inequalities of Jackson-Stechkin type for periodic functions in $L_2$ differentiable in the Weyl sense

M. Sh. Shabozovab, A. A. Shabozovaab

a Tajik National University, Dushanbe
b University of Central Asia

Abstract: For periodic functions differentiable in the sense of Weyl and belonging to the space $L_{2}$, sharp inequalities of Jackson–Stechkin type are obtained for a special $m$th-order modulus of continuity generated by the Steklov operator (function). Similar characteristics of smoothness of functions were considered earlier by V. A. Abilov, F. V. Abilova, V. M. Kokilashvili, S. B. Vakarchuk, V. I. Zabutnaya, K. Tukhliev, etc. For classes of functions defined in terms of these characteristics, we solve a number of extremal problems of polynomial approximation theory.

Keywords: best approximation, periodic function, special modulus of continuity, Jackson–Stechkin inequalities, extremal problems.

UDC: 517.5

MSC: 42C10, 47A58

Received: 20.08.2019
Revised: 31.10.2019
Accepted: 11.11.2019

DOI: 10.21538/0134-4889-2019-25-4-255-264



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025