RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 1, Pages 27–38 (Mi timm1697)

This article is cited in 1 paper

A Trajectory Minimizing the Exposure of a Moving Object

V. I. Berdyshev, V. B. Kostousov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: A corridor $Y$ for the motion of an object is given in the space $X=\mathbb{R}^N$ ($N=2,3$). A finite number of emitters $s_i$ with fixed convex radiation cones $K(s_i)$ are located outside the corridor. The intensity of radiation $F(y)$, $y>0$, satisfies the condition $F(y)\ge \lambda F (\lambda y)$ for $y>0$ and $\lambda >1$. It is required to find a trajectory minimizing the value
$$ J(\cal T)=\sum_{i}\int\limits_{0}^1 F\big(\|s_i-t(\tau)\|\big)\,d\tau $$
in the class of uniform motion trajectories $\cal T=\big\{ t(\tau)\colon 0\le \tau\le 1,\ t(0)=t_*,\ t(1)=t^*\big\}\subset Y$, $t_*,t^*\in \partial Y$, $t_*\ne t^*$. We propose methods for the approximate construction of optimal trajectories in the case where the multiplicity of covering the corridor $Y$ with the cones $K(s_i)$ is at most 2.

Keywords: navigation, optimal trajectory, irradiation, moving object.

UDC: 519.62

MSC: 00A05

Received: 25.12.2019
Revised: 23.01.2020
Accepted: 27.01.2020

DOI: 10.21538/0134-4889-2020-26-1-27-38


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S21–S32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024