RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 5–27 (Mi timm1718)

This article is cited in 4 papers

Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials

G. A. Akishevab

a Eurasian National University named after L.N. Gumilyov, Nur-Sultan
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 <p <q <\infty$, $1 <\tau_{1}, \tau_{2} <\infty$ and $p = q$, $ 1 <\tau_{2} <\tau_{1} <\infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.

Keywords: Lorentz space, Nikol'skii–Besov class, trigonometric polynomial, best approximation, hyperbolic cross.

UDC: 517.51

MSC: 42A05, 42A10, 46E30

Received: 09.09.2019
Revised: 20.05.2020
Accepted: 25.05.2020

DOI: 10.21538/0134-4889-2020-26-2-5-27



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025