RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 47–55 (Mi timm1720)

Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere

V. V. Arestovab, A. A. Selezneva

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m\ge 2$ to a concentric sphere of radius $r\ne1$ with the smallest value of the $L^2$-norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n\ge 1$ whose norms in the space $L^2$ on the unit sphere do not exceed 1. We show that the best extension equals $r^n$ for $r>1$ and $r^{n-1}$ for $0<r<1$. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane ($m=2$).

Keywords: polynomial, Euclidean sphere, $L^2$-norm, best extension.

UDC: 517.518.86

MSC: 41A63, 41A99, 26C05

Received: 10.01.2020
Revised: 10.02.2020
Accepted: 17.02.2020

DOI: 10.21538/0134-4889-2020-26-2-47-55


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S6–S13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024