RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 132–146 (Mi timm1728)

This article is cited in 1 paper

Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set

A. R. Danilina, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set\textup:
$$ \left\{
\begin{array}{ll} \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, & x\in \mathbb{R}^{n},\ y\in \mathbb{R}^{m},\ u\in\mathbb{R}^{r},\\[1ex] \varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u,& \|u\|\le 1,\\[1ex] x(0)=x_0\not=0,\quad y(0)=y_0, & 0<\varepsilon\ll 1,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min. \end{array}
\right. $$
The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved. The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained. An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers of the small parameter $\varepsilon$.

Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.

UDC: 517.977

Received: 15.01.2020
Revised: 27.02.2020
Accepted: 02.03.2020

DOI: 10.21538/0134-4889-2020-26-2-132-146


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2021, 313, suppl. 1, S40–S53

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025