RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 147–160 (Mi timm1729)

On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs

M. R. Zinov'evaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. A graph with the following adjacency relation is defined on $\pi(G)$: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the { Gruenberg–Kegel graph} or the {prime graph} of $G$ and is denoted by $GK(G)$. In A.V. Vasil'ev's Question 16.26 from {The Kourovka Notebook}, it is required to describe all pairs of nonisomorphic finite simple nonabelian groups with identical Gruenberg–Kegel graphs. M. Hagie (2003) and M.A. Zvezdina (2013) gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author (2014) solved this question for pairs of finite simple groups of Lie type over fields of the same characteristic. In the present paper, we prove the following theorem.
Theorem. Let $G$ be a finite simple group of exceptional Lie type over a field with $q$ elements, and let $G_1$ be a finite simple group of Lie type over a field with $q$ elements nonisomorphic to $G$, where $q$ and $q_1$ are coprime. If $GK(G)=GK(G_1)$, then one of the following holds: (1) $\{G,G_1\}=\{G_2(3),A_1(13)\}$; (2) $\{G,G_1\}=\{{^2}F_4(2)',A_3(3)\}$; (3) $\{G,G_1\}=\{{^3}D_4(q),A_2(q_1)\}$, where $(q_1-1)_3\neq 3$ and $q_1+1\neq 2^{k_1}$; (4) $\{G,G_1\}=\{{^3}D_4(q),A_4^{\pm}(q_1)\}$, where $(q_1\mp1)_5\neq 5$; (5) $\{G,G_1\}=\{G_2(q),G_2(q_1)\}$, where $q$ and $q_1$ are not powers of 3; (6) $\{G,G_1\}$ is one of the pairs $\{F_4(q),F_4(q_1)\}$, $\{{^3}D_4(q),{^3}D_4(q_1)\}$, and $\{E_8(q),E_8(q_1)\}$. The existence of pairs of groups in statements (3)–(6) is unknown.

Keywords: finite simple exceptional group of Lie type, spectrum, prime graph.

UDC: 512.542

MSC: 05C25,20D05,20D06

Received: 03.04.2020
Revised: 11.05.2020
Accepted: 25.05.2020

DOI: 10.21538/0134-4889-2020-26-2-147-160


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S228–S240

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024