On the equivalence of reproducing kernel Hilbert spaces connected by a special transform
V. V. Napalkov,
V. V. Napalkov Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
Abstract:
We consider two reproducing kernel Hilbert spaces
$H_1$ and
$H_2$ consisting of complex-valued functions defined on some sets of points
$\Omega_1\subset {\mathbb C}^n$ and
$\Omega_2\subset {\mathbb C}^m$, respectively. The norms in the spaces
$H_1$ and
$H_2$ have an integral form:
\begin{align*} \|f\|_{H_1}^2=\int_{\Omega_1}|f(t)|^2\,d\mu_1(t), \ \ f\in H_1,\quad \|q\|_{H_2}^2=\int_{\Omega_2}|q(z)|^2\,d\mu_2(z), \ \ q\in H_2. \end{align*}
Let
$\{E (\cdot, z)\}_{z\in \Omega_2}$ be some complete system of functions in the space
$H_1$. Define
\begin{align*} \widetilde f(z)\stackrel{def}{=}(E(\cdot, z), f)_{H_1} \ \ \forall z\in \Omega_2,\quad \widetilde H_1=\{\widetilde f,\, f\in H_1\}, (\widetilde f_1,\widetilde f_2)_{\widetilde H_1}\stackrel{def}{=}(f_2,f_1)_{H_1}, \quad \|\widetilde f_1\|_{\widetilde H_1}=\|f_1\|_{H_1} \ \ \forall\,\widetilde f_1,\,\widetilde f_2\in \widetilde H_1. \end{align*}
We prove that the Hilbert spaces
$\widetilde H_1$ and
$H_2$ are equivalent (i.e., consist of the same functions and have equivalent norms) if and only if there exists a linear continuous one-to-one operator
${\mathcal A}$ acting from the space
$\overline H_1$ onto the space
$H_2$ that for any
$\xi\in \Omega_1$ takes the function
$K_{\overline H_1}(\cdot,\xi)$ to the function
$E(\xi,\cdot)$, where
$\overline H_1$ is the space consisting of functions that are complex conjugate to functions from
$H_1$ and
$K_{\overline H_1}(t,\xi)$,
$t,\xi\in \Omega_1$, is the reproducing kernel of
$\overline H_1$. We also obtain other conditions for the equivalence of the spaces
$\widetilde H_1$ and
$H_2$. In addition, we study the question of the equivalence of the spaces
$\check H_2$ and
$H_1$ and the question of the existence of special orthosimilar expansion systems in the spaces
$H_1$ and
$H_2$. We derive a necessary and sufficient condition for the equivalence of the spaces
$H_1$ and
$H_2$. This paper continues the authors' paper in which the case of coinciding spaces
$\widetilde H_1$ and
$H_2$ was considered.
Keywords:
orthosimilar decomposition systems, reproducing kernel Hilbert space, problem of describing the dual space.
UDC:
517.444
MSC: 46E22,
47B32,
30H05,
32A38 Received: 05.02.2020
Revised: 13.05.2020
Accepted: 18.05.2020
DOI:
10.21538/0134-4889-2020-26-2-200-215