RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 238–251 (Mi timm1736)

This article is cited in 1 paper

On the Gibbs phenomenon for rational spline functions

A.-R. K. Ramazanovab, A.-K. K. Ramazanovc, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
c Kaluga Branch of Bauman Moscow State Technical University

Abstract: In the case of functions $f(x)$ continuous on a given closed interval $[a,b]$ except for jump discontinuity points, the Gibbs phenomenon is studied for rational spline functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta, g)$ defined for a knot grid $\Delta: a=x_0<x_1<\dots<x_N=b$ and a family of poles $g_i\not \in [x_{i-1},x_{i+1}]$ $(i=1,2,\dots,N-1)$ by the equalities $R_{N,1}(x)= [R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x)]/(x_i-x_{i-1})$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots,N)$. Here the rational functions $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ $(i=1,2,\dots,N-1)$ are uniquely defined by the conditions $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$; we assume that $R_0(x)\equiv R_1(x)$, $R_N(x)\equiv R_{N-1}(x)$. Conditions on the knot grid $\Delta$ are found under which the Gibbs phenomenon occurs or does not occur in a neighborhood of a discontinuity point.

Keywords: interpolation spline, rational spline, Gibbs phenomenon.

UDC: 517.5

MSC: 97N50

Received: 10.12.2019
Revised: 18.05.2020
Accepted: 25.05.2020

DOI: 10.21538/0134-4889-2020-26-2-238-251



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024