RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 2, Pages 270–277 (Mi timm1738)

Mean-square approximation of functions on the whole axis by algebraic polynomials with the Chebyshev-Hermite weight

K.Tukhliev, A. M. Tuichiev

Khujand State University

Abstract: We derive exact inequalities of Jackson–Stechkin type between the value $E_{n-1}(f^{(s)})_{2}$ of the best mean-square approximation on $\mathbb{R}$ with the weight $\rho(x)=e^{-x^2}$ of successive derivatives $f^{(s)}$, $s=0,1,...,r$, of functions $f\in L_{2,\rho}^{(r)}(\mathbb{R})$ and average values of $m$th-order generalized moduli of continuity of the $r$th derivatives. The exact values of some extremal approximation characteristics in the space $L_{2,\rho}(\mathbb{R})$ are found for classes of functions defined in terms of these moduli of continuity.

Keywords: best approximations, algebraic polynomial, Jackson–Stechkin inequalities, $m$th-order modulus of continuity, Chebyshev–Hermite polynomial.

UDC: 517.5

MSC: 42A10, 41A17, 41A44

Received: 20.08.2019
Revised: 16.03.2020
Accepted: 23.03.2020

DOI: 10.21538/0134-4889-2020-26-2-270-277



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025