RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 3, Pages 23–31 (Mi timm1742)

Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$

K. S. Efimova, A. A. Makhnevbc

a Ural State University of Economics, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: A distance-regular graph $\Gamma$ of diameter 3 is called a Shilla graph if it has the second eigenvalue $\theta_1=a_3$. In this case $a=a_3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. There exist graphs with intersection arrays $\{12,10,5;1,1,8\}$ and $\{12,10,3;1,3,8\}$. The nonexistence of graphs with intersection arrays $\{12,10,2;1,2,8\}$, $\{27,20,10;1,2,18\}$, $\{42,30,12;1,6,28\}$, and $\{105,72,24;1,12,70\}$ was proved earlier. In this paper, we study the automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{30,22,9;1,3,20\}$, which is a Shilla graph with $b=3$. Assume that $a$ is a vertex of $\Gamma$, $G={\rm Aut}(\Gamma)$ is a nonsolvable group, $\bar G=G/S(G)$, and $\bar T$ is the socle of $\bar G$. Then $\bar T\cong L_2(7)$, $A_7$, $A_8$, or $U_3(5)$. If $\Gamma$ is arc-transitive, then $T$ is an extension of an irreducible $F_2U_3(5)$-module $V$ by $U_3(5)$ and the dimension of $V$ over $F_3$ is 20, 28, 56, 104, or 288.

Keywords: Shilla graph, graph automorphism.

UDC: 519.17

MSC: 05C25

Received: 02.03.2020
Revised: 26.05.2020
Accepted: 15.06.2020

DOI: 10.21538/0134-4889-2020-26-3-23-31


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 315, suppl. 1, S89–S96

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025