RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 3, Pages 211–218 (Mi timm1757)

This article is cited in 2 papers

Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions

F. Suna, X. Yia, S. F. Kamornikovb

a Zhejiang Sci-tech University
b Gomel State University named after Francisk Skorina

Abstract: Wielandt's criterion for the subnormality of a subgroup of a finite group is developed. For a set $\pi=\{p_1,p_2,\ldots,p_n\}$ and a partition $\sigma=\{\{p_1\},\{p_2\},\ldots,\{p_n\},\{\pi\}'\}$, it is proved that a subgroup $H$ is $\sigma$-subnormal in a finite group $G$ if and only if it is $\{\{p_i\},\{p_i\}'\}$-subnormal in $G$ for every $i=1,2,\ldots,n$. In particular, $H$ is subnormal in $G$ if and only if it is $\{\{p\},\{p\}'\}$-subnormal in $\langle H,H^x\rangle$ for every prime $p$ and any element $x\in G$.

Keywords: finite group, subnormal subgroup, $\sigma$-subnormal subgroup, elementary binary partition.

UDC: 512.542

MSC: 20D25, 20D35

Received: 04.06.2020
Revised: 30.06.2020
Accepted: 03.07.2020

DOI: 10.21538/0134-4889-2020-26-3-211-218


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S194–S200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025