Abstract:
Lattice-ordered semirings ($drl$-semirings) are considered. Compact sheaves of $drl$-semirings are defined and their characterization is obtained. The properties of compact sheaves are studied; in particular, the structure of irreducible and maximal $l$-ideals in the $drl$-semiring of sections of a compact sheaf is described. A compact sheaf of functional semirings ($f$-semirings) is described in terms of a continuous mapping of the irreducible (and maximal) spectrum of this sheaf onto a compact Hausdorff space. The paper also contains a proof that an $f$-semiring is Gelfand if and only if it is isomorphic to the semiring of all sections of a compact sheaf of $f$-semirings with a unique maximal ideal.