RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2020 Volume 26, Number 4, Pages 196–209 (Mi timm1775)

This article is cited in 1 paper

On a refinement of Marcinkiewicz-Zygmund type inequalities

A. V. Kroó

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Abstract: The main goal of this paper is to verify a refined Marcinkiewicz–Zygmund type inequality with a quadratic error term
$$ \frac{1}{2}\sum_{j=0}^{nm-1}(x_{j+1}-x_{j-1})w(x_j)|t_n(x_{j})|^q=(1+O(m^{-2}))\int\limits_{-\pi}^{\pi}w(x)|t_n(x)|^q\,dx, \quad 2\leq q<\infty, $$
where $t_n$ is any trigonometric polynomial of degree at most $n, \ -\pi=x_0<x_1<\cdots <x_{mn}=\pi, \max\limits_{0\leq j\leq mn-1}(x_{j+1}-x_{j})=O\Big(\displaystyle\frac{1}{nm}\Big),\ m,n\in\mathbb{N}$, and $w$ is a Jacobi type weight. Moreover, the quadratic error term $O(m^{-2})$ is shown to be sharp, in general. In addition, similar results are given for $q=\infty$ and in the multivariate case.

Keywords: multivariate polynomials; Marcinkiewicz-Zygmund, Bernstein, and Schur type inequalities; discretization of $L^p$ norm; doubling and Jacobi type weights.

UDC: 517.5

MSC: 41A17, 41A63

Received: 22.01.2020
Revised: 06.10.2020
Accepted: 12.10.2020

Language: English


 English version:
DOI: 10.21538/0134-4889-2020-26-4-196-209

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025