RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2021 Volume 27, Number 2, Pages 35–48 (Mi timm1812)

This article is cited in 3 papers

Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint

S. M. Aseevabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
c International Institute for Applied Systems Analysis, Laxenburg

Abstract: Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.

Keywords: optimal control, infinite horizon, Pontryagin maximum principle, asymptotic endpoint constraint, growth models, sustainable development.

UDC: 517.977

MSC: 49K15, 91B62

Received: 01.02.2021
Revised: 15.02.2021
Accepted: 22.02.2021

DOI: 10.21538/0134-4889-2021-27-2-35-48


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 315, suppl. 1, S42–S54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025