RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2021 Volume 27, Number 2, Pages 99–107 (Mi timm1817)

This article is cited in 10 papers

Optimal states of distributed exploited populations with periodic impulse selection

A. A. Davydovab, D. A. Melnika

a Lomonosov Moscow State University
b National University of Science and Technology «MISIS», Moscow

Abstract: The dynamics of a population distributed on a torus is described by an equation of the Kolmogorov–Petrovsky–Piskunov–Fisher type in the divergence form. The population is exploited by periodic sampling of a constant distributed measurable ratio of its density. We prove that there exists a sampling ratio maximizing the time-averaged income in kind, i.e., a ratio that provides an optimal stationary exploitation in the long run.

Keywords: distributed population, Kolmogorov–Petrovsky–Piskunov–Fisher equation, impulse control, optimal solution.

UDC: 517.977

MSC: 49J15

Received: 30.03.2021
Revised: 12.04.2021
Accepted: 19.04.2021

DOI: 10.21538/0134-4889-2021-27-2-99-107


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 315, suppl. 1, S81–S88

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025