RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2021 Volume 27, Number 4, Pages 35–47 (Mi timm1861)

Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces

N. Yu. Antonova, A. N. Lukoyanovb

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We consider the problem of order estimates for partial sums of trigonometric Fourier series as operators from Orlicz spaces $L^{\varphi}_{2\pi}$ to the space of $2\pi$-periodic continuous functions $C_{2\pi}$. It is established that an arbitrary function $\varphi$ generating an Orlicz class satisfies the estimate
$$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) \ln (n+1) ||f||_{L^{\varphi}_{2\pi}}, \tag{*} $$
where $f \in L^{\varphi}_{2\pi}$, $n \in \mathbb{N}$, $S_n(f)$ is the $n$th partial sum of the trigonometric Fourier series of $f$, and the constant $C>0$ is independent of $f$ and $n$. In addition, it is shown that if the function $\varphi$ satisfies the $\Delta_2$-condition, then the estimate can be improved. More exactly,
$$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) ||f||_{L^{\varphi}_{2\pi}}, \qquad f \in L^{\varphi}_{2\pi}, \, n \in \mathbb{N}, \, C=C(\varphi ). \tag {**} $$
Counterexamples are constructed, which show that if $\varphi$ satisfies the $\Delta_2$-condition, then estimate ($\ast \ast $) is unimprovable in order on the space $L^{\varphi}_{2\pi}$ and, if $\varphi$ satisfies the $\Delta^2$-condition, then estimate ($\ast $) is unimprovable in order on the space $ L^{\varphi}_{2\pi}$.

Keywords: Fourier series, Orlicz space, Lebesgue constants.

UDC: 517.518.45

MSC: 42A10

Received: 28.07.2021
Revised: 25.10.2021
Accepted: 27.05.2021

DOI: 10.21538/0134-4889-2021-27-4-35-47



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024