RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2021 Volume 27, Number 4, Pages 102–110 (Mi timm1866)

Comparison of the remainders of the Simpson quadrature formula and the quadrature formula for three-point rational interpolants

A.-R. K. Ramazanovab, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: A quadrature formula with positive coefficients is constructed with the use of three nodes $a$, $b$, and $c=(a+b)/2$ and rational interpolants of the form $\rho (x)= \alpha +\beta (x-c)+\gamma/(x-g)$ with a pole $g$ determined by nodes outside the integration interval $[a,b]$. The error of the constructed formula is smaller than the error of the corresponding Simpson quadrature formula if the integrand $f(x)$ has a continuous derivative $f^{(4)}(x)$ on the interval $[a,b]$ and the inequality $f^{(4)}(x) f^{\prime\prime}(x)>0$ is satisfied.

Keywords: rational interpolant, quadrature formula, Simpson formula.

UDC: 517.51, 519.64

MSC: 97N50

Received: 20.02.2021
Revised: 17.05.2021
Accepted: 15.06.2021

DOI: 10.21538/0134-4889-2021-27-4-102-110



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024