RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 1, Pages 7–26 (Mi timm1879)

On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space

G. A. Akishevab

a Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p,\tau,\theta}^{\bar{r}}B$, and study the best $M$-term approximation of a function $f\in L_{p,\tau}(\mathbb{T}^{m})$ by trigonometric polynomials. Order-exact estimates for the best $M$-term approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q,\tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$.

Keywords: Lorentz space, Nikol'skii–Besov class, trigonometric polynomial, best $M$-term approximation.

UDC: 517.51

MSC: 41A10, 41A25, 42A05

Received: 24.08.2021
Revised: 14.10.2021
Accepted: 18.10.2021

DOI: 10.21538/0134-4889-2022-28-1-7-26



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025