RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 2, Pages 84–95 (Mi timm1906)

On Kolmogorov's inequality for the first and second derivatives on the axis and on the period

P. Yu. Glazyrina, N. S. Payuchenko

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: We study the inequality $\|y'\|_{L_q(G)}\le K(r,p, G) \|y\|_{L_r(G)}^{1/2}\|y'' \|_{L_p(G)}^{1/2}$ on the real line $G=\mathbb{R}$ and on the period $\mathbb{T}$ for $q\in [1,\infty)$, $r\in (0, \infty]$, $p\in[1, \infty ]$, and $1/r+1/p=2/q$. We prove that the exact constant $K(r,p,\mathbb{R})$ is equal to the exact constant $K_1$ in the inequality $\|u'\|_{L_q[0,1]}\le K_1 \|u\|_{ L_r[0,1]}^{1/2} \|u''\|_{L_p[0,1]}^{1/2}$ over the set of convex functions $u(x)$, $x\in [0,1]$, having an absolutely continuous derivative and satisfying the condition $u'(0)=u(1)=0$. As a consequence of this statement, the equality $K(r,p,\mathbb{R})=K(r,p,\mathbb{T})$ established in 2003 by V. F. Babenko, V. A. Kofanov, and S. A. Pichugov for $r\ge 1$, is extended to $r\ge 1/2$. In addition, we give a new proof of the equality $K(r,1,\mathbb{R})=(r+1)^{1/(2(r+1))}$ for $p=1$, $r\in [1,\infty)$, and $q=2r/(r+1)$, which was established by V. V. Arestov and V. I. Berdyshev in 1975.

Keywords: Kolmogorov's inequality, inequalities for norms of functions and their derivatives, exact constants, real axis, period.

UDC: 517.51

MSC: 39B62

Received: 04.04.2022
Revised: 02.05.2022
Accepted: 04.05.2022

DOI: 10.21538/0134-4889-2022-28-2-84-95



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025