RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 2, Pages 176–186 (Mi timm1913)

On $Q$-polynomial Shilla graphs with $b = 4$

A. A. Makhnev, I. N. Belousov, M. P. Golubyatnikov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: Shilla graphs introduced by J. H. Koolen and J. Park are considered. In the problem of finding feasible intersection arrays of Shilla graphs with a fixed parameter $b$, $Q$-polynomial graphs play an important role. For such graphs, the smallest eigenvalue is the minimum possible for the third nonprincipal eigenvalue. Intersection arrays of $Q$-polynomial graphs were found for $b=3$ in 2010 by Koolen and Park and for $b\in\{4,5\}$ in 2018 by Belousov. In particular, it is known that a $Q$-polynomial Shilla graph with $b=4$ has intersection array $\{104,81,27;1,9,78\}$, $\{156,120,36;1,12,117\}$, or $\{20(q-2),3(5q-9),2q;1,2q,15(q-2)\}$, where $q=6,9,18$. We prove that distance-regular graphs with intersection arrays $\{80,63,12;1,12,60\}$, $\{140,108,18;1,18,105\}$, and $\{320,243,36;1,36,240\}$ do not exist.

Keywords: Shilla graph, distance-regular graphs, $Q$-polynomial graph.

UDC: 519.17

MSC: 05E30, 05C50

Received: 15.03.2022
Revised: 15.04.2022
Accepted: 18.04.2022

DOI: 10.21538/0134-4889-2022-28-2-176-186



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024