RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2022 Volume 28, Number 2, Pages 258–268 (Mi timm1919)

On a class of vertex-primitive arc-transitive amply regular graphs

M. P. Golubyatnikovab, N. V. Maslovaab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: A simple $k$-regular graph with $v$ vertices is an amply regular graph with parameters $(v, k, \lambda, \mu)$ if any two adjacent vertices have exactly $\lambda$ common neighbors and any two vertices which are at distance $2$ in this graph have exactly $\mu$ common neighbors. Let $G$ be a finite group, $H \le G$, ${\mathfrak{H}} = \{H^g \,|\, g \in G \}$ be the corresponding conjugacy class of subgroups of $G$, and $1 \le d $ be an integer. We construct a simple graph $\Gamma(G, H, d)$ as follows. The vertices of $\Gamma(G, H, d)$ are the elements of ${\mathfrak{H}}$, and two vertices $H_1$ and $H_2$ from ${\mathfrak{H}}$ are adjacent in $\Gamma(G, H, d)$ if and only if $|H_1 \cap H_2| = d$. In this paper we prove that if $q$ is a prime power with $13 \le q \equiv 1 \pmod{4}$, $G=SL_2(q)$, and $H$ is a dihedral maximal subgroup of $G$ of order $2(q-1)$, then the graph $\Gamma(G, H, 8)$ is a vertex-primitive arc-transitive amply regular graph with parameters $\left(\dfrac{q(q+1)}{2}, \dfrac{q-1}{2}, 1, 1\right)$ and with ${\rm Aut}(PSL_2(q))\le {\rm Aut}(\Gamma)$. Moreover, we prove that $\Gamma(G, H, 8)$ has a perfect $1$-code, in particular, its diameter is more than $2$.

Keywords: finite simple group; arc-transitive graph; amply regular graph; edge-regular graph; graph of girth 3; Deza graph; perfect 1-code.

UDC: 512.542+519.177

MSC: 05C25, 20D06

Received: 11.03.2022
Revised: 06.05.2022
Accepted: 11.05.2022

Language: English

DOI: 10.21538/0134-4889-2022-28-2-258-268



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024