This article is cited in
1 paper
On a condition for the coincidence of transform spaces for functionals in a Hilbert space
V. V. Napalkov (Jr.)a,
A. A. Nuyatovb a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b National Research Lobachevsky State University of Nizhny Novgorod
Abstract:
The paper considers the following problem. Let
$H$ be some reproducing kernel Hilbert space consisting of functions given on a set
$\Omega\subset {\mathbb C}^n$,
$n\ge1$, and let
$\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and
$\{e_2(\cdot,\xi)\}_{\xi\in\Omega_1}$ be some complete systems of functions in
$H$, where
$\Omega_1\subset {\mathbb C^m}$,
$m\ge1$. Define
\begin{align*}
\widetilde f(z)\stackrel{def}{=}(e_1(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widetilde H=\{\widetilde f,\, f\in H\},
\\ (\widetilde f_1,\widetilde f_2)_{\widetilde H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widetilde f_1\|_{\widetilde H}=\|f_1\|_{H} \quad\forall \widetilde f_1,\widetilde f_2\in \widetilde H,
\\
\widehat f(z)\stackrel{def}{=}(e_2(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widehat H=\{\widehat f,\, f\in H\},
\\ (\widehat f_1,\widehat f_2)_{\widehat H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widehat f_1\|_{\widehat H}=\|f_1\|_{H} \quad\forall \widehat f_1,\widehat f_2\in \widehat H.
\end{align*}
It is required to find a condition under which the spaces
$\widehat H$ and
$\widetilde H$ coincide, i.e.,
$\widehat H$ and
$\widetilde H$ consist of the same functions and \[ \|f\|_{\widehat H}=\|f\|_{\widetilde H} \forall f\in \widehat H=\widetilde H. \] We also study the question of conditions under which the spaces
$\widehat H$ and
$\widetilde H$ are equivalent. In the case when the systems of functions
$\{e_j(\cdot,\xi)\}_{\xi\in\Omega_1}$,
$j=1,2$, are orthosimilar decomposition systems in the space
$H$ with the same measure
$\mu$ given on
$\Omega_1$, a criterion is established; more exactly, a condition is found that is necessary and sufficient for the coincidence (equivalence) of the spaces
$\widehat H$ and
$\widetilde H$. Note that, in the case of an arbitrary space
$H$ and arbitrary systems of functions
$\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and
$\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ that are complete in
$H$, the found condition is always necessary; i.e., if the spaces
$\widehat H$ and
$\widetilde H$ coincide (are equivalent), then this condition is fulfilled. In the case when the systems of functions
$\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and
$\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ are orthosimilar decomposition systems in the space
$H$ with different measures
$\mu_1$ and
$\mu_2$, respectively, given on
$\Omega_1$, we construct specific examples of spaces
$H$ and systems of functions
$\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and
$\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ complete in
$H$ and such that the specified condition is met, but the spaces
$\widehat H$ and
$\widetilde H$ are not the same (not equivalent).
Keywords:
orthosimilar decomposition systems, reproducing kernel Hilbert space, Riesz basis, problem of describing the dual space.
UDC:
517.444
MSC: 46E22,
47B32,
30H05,
32A38 Received: 28.04.2022
Revised: 10.08.2022
Accepted: 15.08.2022
DOI:
10.21538/0134-4889-2022-28-3-142-154