RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2009 Volume 15, Number 1, Pages 30–43 (Mi timm202)

This article is cited in 8 papers

On recognizability of some finite simple orthogonal groups by spectrum

O. A. Alekseevaa, A. S. Kondrat'evb

a Chelyabinsk Institute of Humanities
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: It is proved that if $G$ is a finite group with the same set of element orders as simple group $D_p(q)$, where $p$ is a prime, $p\ge5$ and $q\in\{2,3,5\}$, then the commutator group of $G/F(G)$ is isomorphic to $D_p(q)$, the subgroup $F(G)$ is equal to 1 for $q=5$ and to $O_q(G)$ for $q\in\{2,3\}$, $F(G)\le G'$ and $|G/G'|\le2$.

Keywords: finite simple group, spectrum of a group, prime graph, recognition by spectrum, orthogonal group.

UDC: 512.542

Received: 07.02.2009


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2009, 265, suppl. 1, S10–S23

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025