RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2023 Volume 29, Number 3, Pages 247–260 (Mi timm2029)

Optimization of the Optimal Value Function in Problems of Convex Parametric Programming

O. V. Khamisov

L. A. Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk

Abstract: We consider a problem of convex parametric programming in which the objective function and the constraint functions are convex functions of an external parameter. Computational procedures are suggested for finding the maximum and minimum values of the optimal value function and for finding inner and outer approximations to the set of parameters for which the problem is consistent. All procedures are based on the application of support functions. Illustrative examples are provided.

Keywords: parametric optimization, optimal value function, support function, inner and outer approximation.

UDC: 519.6

MSC: 28X04

Received: 13.06.2023
Revised: 14.08.2023
Accepted: 21.08.2023

DOI: 10.21538/0134-4889-2023-29-3-247-260


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2023, 323, suppl. 1, S133–S145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025