RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2023 Volume 29, Number 4, Pages 121–129 (Mi timm2041)

On the Kegel–Wielandt $\sigma$-Problem

S. F. Kamornikova, V. N. Tyutyanovb

a Francisk Skorina Gomel State University
b Gomel Branch of International University "MITSO"

Abstract: For an arbitrary partition $\sigma$ of the set $\mathbb{P}$ of all primes, a sufficient condition for the $\sigma$-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt $\sigma$-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank $1$.

Keywords: finite group, $\sigma$-subnormal subgroup, Kegel–Wielandt $\sigma$-problem, Hall subgroup, complete Hall set.

UDC: 512.542

MSC: 20D20, 20D35

Received: 20.07.2023
Revised: 25.08.2023
Accepted: 04.09.2023

DOI: 10.21538/0134-4889-2023-29-4-121-129


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, 323, suppl. 1, S113–S120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024