RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2024 Volume 30, Number 1, Pages 100–108 (Mi timm2065)

Finite groups with $\mathbb{P}$-subnormal Schmidt subgroups

X. Yia, Zh. Xua, S. F. Kamornikovb

a Zhejiang Sci-tech University
b Gomel State University named after Francisk Skorina

Abstract: A subgroup $H$ of a group $G$ is called $\mathbb{P}$-subnormal in $G$ whenever either $H = G$ or there is a chain of subgroups
$$H = H_0 \subset H_1 \subset \ldots \subset H_n = G$$
such that $|H_i:H_{i-1}|$ is a prime for every $i = 1, 2,\ldots, n$. We study the structure of a finite group $G$ all of whose Schmidt subgroups are $\mathbb{P}$-subnormal. The obtained results complement the answer to Problem 18.30 in the Kourovka Notebook.

Keywords: finite group, $\mathbb{P}$-subnormal subgroup, Schmidt subgroup, saturated Fitting formation.

UDC: 512.542

MSC: 20D20, 20D35

Received: 05.12.2023
Revised: 08.01.2024
Accepted: 15.01.2024

DOI: 10.21538/0134-4889-2024-30-1-100-108


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, 325, suppl. 1, S231–S238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024