RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2024 Volume 30, Number 1, Pages 270–279 (Mi timm2077)

An optimal interpolation problem with hermite information in the sobolev class $W^{n}_{1}([-1,1])$

Dandan Guoa, Yongping Liua, Guiqiao Xub

a Beijing Normal University, Beijing
b Tianjin Normal University

Abstract: In this paper, we study the optimal interpolation problem in the Sobolev class $W^{n}_{1}([-1,1])$, $n\in\mathbb N$, with Hermite information. By some properties of spline functions, we proved that the Lagrange interpolation based on the extreme points of Chebyshev polynomials is optimal for $W^{n}_{1}([-1,1])$, and we obtained the approximation error for the optimal interpolation problem.

Keywords: Hermite interpolation, spline function, optimal interpolation, Sobolev class.

MSC: 41A05, 41A25, 41A26

Received: 17.08.2021
Revised: 29.12.2023
Accepted: 10.01.2024

Language: English

DOI: 10.21538/0134-4889-2024-30-1-270-279



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024