RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2024 Volume 30, Number 3, Pages 68–85 (Mi timm2105)

An optimal synthesis for a triple integrator with a state constraint

E. Voroninaa, A. V. Dmitrukba

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b Central Economics and Mathematics Institute of the Russian Academy of Sciences, Moscow

Abstract: The time-optimal problem of steering a triple integrator from an arbitrary point to the origin is considered under constraints on the input control and on one of the state variables. An optimal control is synthesized based on the maximum principle in the Dubovitskii–Milyutin form.

Keywords: control system, time optimality, state constraint, maximum principle, switching points, Lebesgue–Stieltjes measure, optimal synthesis.

UDC: 517.977

Received: 03.06.2024
Revised: 03.07.2024
Accepted: 08.07.2024

DOI: 10.21538/0134-4889-2024-30-3-68-85


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2024, 327, suppl. 1, S257–S274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025