RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2024 Volume 30, Number 4, Pages 180–187 (Mi timm2136)

Lattice characterizations of $p$-soluble and $p$-supersoluble finite groups

A. -M. Liua, S. Wangab, V. G. Safonovc, A. N. Skibadc

a School of Mathematics and Statistics, Hainan University
b School of Mathematics, Tianjin University
c Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
d Francisk Skaryna Gomel State University, Faculty of Mathematics

Abstract: Let $G$ be a finite group, and let ${\mathcal L}(G)$ be the lattice of all subgroups of $G$. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the Kurosh sense) of the lattice ${ \mathcal L}(G)$, i.e., if (1) $\langle X, M \cap Z \rangle=\langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$, and (2) $\langle M, Y \cap Z \rangle=\langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$. If $A$ is a subgroup of $G$, then $A_{m G}$ is the subgroup of $A$ generated by all its subgroups that are modular in $G$. We say that a subgroup $A$ is $N$-modular in $G$ ($N\leq G$) if, for some modular subgroup $T$ of $G$ containing $A$, $N$ avoids the pair $(T, A_{mG})$, i.e. $N\cap T=N\cap A_{mG}$. Using these notions, we give new characterizations of $p$-soluble and $p$-supersoluble finite groups.

Keywords: finite group, $p$-soluble group, $p$-supersoluble group, modular subgroup, $N$-modular subgroup.

UDC: 512.542

MSC: 20D10, 20D30

Received: 13.05.2024
Revised: 12.06.2024
Accepted: 17.06.2024

DOI: 10.21538/0134-4889-2024-30-4-180-187


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2024, 327, suppl. 1, S174–S181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025